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Finite di!erencing formulations for dynamic bending strain are used to de"ne
measurement methods for autospectral, spatial and time history predictions of
dynamic bending strain. These measurement methods provide predictions of
dynamic bending strain in both near"eld and far"eld regions from discrete
measurements of displacement, velocity or acceleration. The di!erencing
formulations considered use either three- or four-point "nite di!erencing requiring
simultaneous measurements at three or four positions, respectively. The number of
simultaneous measurements required is reduced to two if the response is stationary
and frequency response methods are used. The main limitation of these di!erencing
methods is that the spatial extent of the measurement array precludes the
prediction of dynamic bending strain at locations such as a clamped boundary
where dynamic strain is usually largest. Experimental results are presented
demonstrating autospectral, spatial and time history predictions of dynamic strain
in both near"eld and far"eld regions, and sources of errors in predictions are
discussed. As structural intensity is given by the product of dynamic stress and
velocity, the work presented here is also of interest for structural intensity
measurements, particularly in near"eld regions when evanescent waves cannot be
neglected.

( 1999 Academic Press
1. INTRODUCTION

Measurement methods for the estimation of dynamic stress utilizing portable
accelerometers in place of strain gauges are of interest for assessing the fatigue life of
randomly vibrating structures. Bene"ts of using accelerometers in place of strain
gauges are summarized in Karczub [1]. The objective of the present work is to
investigate the application of "nite di!erencing methods, developed for structural
intensity measurements, to the measurement of dynamic stress in randomly
vibrating structures. The motivation for extending structural intensity "nite
di!erencing techniques to the measurement of dynamic stress stems from the
de"nition of structural intensity in terms of the product of dynamic stress and
velocity. Finite di!erencing methods for the measurement of dynamic stress are
also investigated here as an alternative to the use of correlations between dynamic
2}460X/99/390615#26 $30.00/0 ( 1999 Academic Press
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stress and velocity [1] which only provide exact autospectral and time history
predictions of dynamic stress in far"eld regions.

The formulations developed in this paper provide direct measurements of
dynamic stress autospectra and time histories at a point in both near"eld and
far"eld regions. The derivations of these formulations are based on similar
derivations for structural intensity measurement methods presented by Pavic [2],
Verheij [3], Cuschieri [4] and Linjama and Lahti [5]. Equations are also derived to
correct for "nite di!erencing errors associated with propagating and evanescent
waves. The predictions are exact in far"eld regions once corrected for propagating
wave "nite di!erencing errors, and are slightly conservative in near"eld regions.
The experimental analysis presented for autospectral, spatial and time history
predictions considers the accuracy of predictions with frequency, the e!ects of
transducer spacing, whether dynamic stress is correctly predicted in the near "eld
and far "eld, and the e!ects of measurement position relative to antiresonances in
the response "eld. As well as providing direct measurements of dynamic stress at
a selected location, the measurement methods presented here may "nd use for the
separate analysis of the dynamic stress and velocity components of intensity
when undertaking structural intensity measurements. The main limitation of "nite
di!erencing methods for the measurement of dynamic stress is that they cannot
be used at the boundaries of a system where maximum dynamic stress usually
occurs [1].

2. FINITE DIFFERENCING FORMULATIONS

The strain}displacement relation for #exural vibration of a thin beam is

m (x, t)"!z
L2w(x, t)

Lx2
, (1)

where m(x, t) is the strain of a "bre at distance z from the neutral axis, w (x, t) is the
transverse displacement, t is the time and x is the axial position along the beam.
Maximum dynamic strain occurs at the outermost "bre, distance z

m
from the

neutral axis, and is given by

m (x, t)"!z
m

L2w(x, t)
Lx2

. (2)

Equation (2) shows that dynamic bending strain is directly proportional to beam
curvature, where the beam curvature is a second order spatial derivative of
the continuous displacement function w(x, t). Since only discrete vibration
measurements of displacement are possible using vibration transducers such as
accelerometers, the second order derivative in equation (2) must be reexpressed
in terms of the displacement at discrete locations x

i
. Finite di!erencing

approximations are used for this purpose.



Figure 1. Measurement array for "nite di!erencing: (a) three-point "nite di!erencing; (b) four-point
"nite di!erencing.
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2.1. THREE-POINT FINITE DIFFERENCING

Substituting the three-point "nite di!erencing approximation for a second-order
derivative into equation (2) yields

m(x, t)"!z
m A

w(x
3
, t)!2w(x

2
, t)#w (w

1
, t)

D2 B , (3)

where x is the location at which dynamic strain is predicted, D is the transducer
spacing, and w(x

i
, t) is the displacement at position x

*
and time t. The measurement

positions x
*
are symmetric about x as shown in Figure 1(a), and are de"ned by

x
1
"x!D, x

2
"x and x

3
"x#D. The span over which measurements are

performed is 2D.

2.2. FOUR-POINT FINITE DIFFERENCING

The four-point "nite di!erencing formulation for dynamic bending strain is

m(x, t)"!z
m A

w(x
4
, t)!w(x

3
, t)!w(x

2
, t)#w(x

1
, t )

2D2 B . (4)

The measurement positions x
*

are symmetric about x and are de"ned by
x
1
"x!3D/2, x

2
"x!D/2, x

3
"x#D/2 and x

4
"x#3D/2. The spatial extent

of the four-point measurement aray is 3D. The measurement positions for
four-point "nite di!erencing are shown diagrammatically in Figure 1(b).

3. MEASUREMENT METHODS

Measurement methods for "nite di!erencing predictions of dynamic bending
strain are derived either directly in the time domain or indirectly in the frequency
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domain. The frequency-domain methods are derived using either spectral density
functions or frequency response functions, together with the Fourier transform of
equation (3) or equation (4). The resulting measurement methods are classi"ed as
(a) time-domain di!erencing, (b) spectral di!erencing and (c) frequency response
function di!erencing. Methods (a) and (c) can be used for autospectral, spatial and
time history predictions of dynamic strain, whereas method (b) only provides
autospectral predictions of dynamic strain. The relative advantages of the time- and
frequency-domain approaches for this type of application are discussed by Verheij
[3]. Frequency response function di!erencing is used to reduce the number of
simultaneous measurements from three or four to only two. Frequency response
functions are used by Linjama and Lahti [5] for "nite di!erencing measurements of
structural intensity.

3.1. TIME-DOMAIN FINITE DIFFERENCING

Time-domain "nite di!erencing involves the direct evaluation of equation (3) or
equation (4) using the simultaneously measured displacements at three or
four equally spaced positions. The most practical approach for implementation
of time-domain "nite di!erencing is to use an electronic circuit for analogue
di!erencing of the measured displacements. Rearranging equation (3) in terms of
"rst-order di!erences gives

m (x, t)"
!z

m
D2

M[w(x
3
, t)!w(x

2
, t)]![w(x

2
, t)!w(x

1
, t)]N (5)

which involves the calculation of three di!erences at two levels from three inputs.
The "rst two di!erences are [w(x

3
, t)!w (x

2
, t)] and [w(x

2
, t)!w(x

1
, t)], and the

third di!erence is the di!erence of these two subcalculations. This calculation is
implemented electronically using the logic shown in Figure 2(a). Similarly, for
four-point "nite di!erencing, equation (4) becomes

m(x, t)"
z
m

2D2
M[w(x

4
, t)!w(x

3
, t)]![w(x

2
, t)!w(x

1
, t)]N . (6)

In this case there are four inputs, two level of di!erencing and three di!erences to be
calculated. This calculation is implemented electronically using the logic shown in
Figure 2(b).

Since equations (5) and (6) are a linear function of the displacements, either
velocity or acceleration may be used in place of displacement as the input signal to
the analogue di!erencing circuit. If the velocity l (x, t) is used as the input signal,
dynamic strain for three-point di!erencing is given by

m (x, t)"A
!z

m
D2 B G P

=

~=

1
i2nf AP

=

~=

<
3pt

(x, t) e~*2nftdtB e*2nftd fH , (7)



Figure 2. Analogue di!erencing circuit logic: (a) three point "nite di!erencing; (b) four-point "nite
di!erencing.
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where

<
3pt

(x, t)"[l(x
3
, t)!l (x

2
, t)]![l (x

2
, t)!l(x

1
, t)] (8)

is the output of the three-point analogue di!erencing circuit. The dynamic strain for
four-point di!erencing using velocity as the input signal is given by

m(x, t)"A
!z

m
2D2 B G P

=

~=

1
i2nf AP

=

~=

<
4pt

(x, t) e~*2nftdtB e*2nftd fH , (9)

where

<
4pt

(x, t)"[l(x
4
, t)!l (x

3
, t)]![l (x

2
, t)!l(x

1
, t)] (10)

is the output of the four-point analogue di!erencing circuit. Velocity is the
preferred vibration signal for time-domain "nite di!erencing since it has a #at
frequency weighting which gives the best signal-to-noise ratio over a broad
frequency range. If acceleration is used in place of velocity in equations (8) and (10),
the factors 1/i2nf in equations (7) and (9) are simply replaced by !1/(2n f )2. The
integrations in equations (7) and (9) are implemented either directly, using an
analogue integrator, or indirectly using Fourier transforms, convolution and
numerical integration in the complex frequency domain.



680 D. G. KARCZUB AND M. P. NORTON
3.2. AUTOSPECTRAL PREDICTIONS USING TIME-DOMAIN FINITE DIFFERENCING

Autospectral predictions of dynamic strain using time-domain "nite di!erencing
are given by

Gm(x, f )"Sm1 *(x, f ) m1 (x, f )T, (11)

where m1 (x, f ) is the complex Fourier transform of the predicted dynamic strain
m (x, t ) (obtained using time-domain "nite di!erencing), the asterisk denotes
the complex conjugate and the brackets S T are used to denote ensemble averag-
ing. Assuming that velocity is used as the input signal for analogue di!erencing,
substitution of the predicted dynamic strain from equation (7) or equation (9)
into the de"nition for the autospectral density function, equation (11),
yields

Gmm(x, f )"A
z
m

2nf D2B
2
G

VV,3pt
(x, f ) (12)

for three-point analogue di!erencing, and

Gmm(x, f )"A
z
m

4nf D2B
2
G

VV,4pt
(x, f ) (13)

for four-point analogue di!erencing, where G
VV

(x, f ) is the measured
autospectrum of the output signal from the analogue di!erencing circuit. In this
case, the required integrations are performed numerically in the real frequency
domain and it is not necessary to use Fourier transform methods and convolution
as in section 3.1.

3.3. SPECTRAL FINITE DIFFERENCING

Spectral "nite di!erencing methods for autospectral predictions of
dynamic strain are derived by substituting the Fourier transforms of equations (3)
and (4) into the de"nition for the autospectral density function given by equation
(11). The Fourier transform of equation (3) for three-point "nite di!erencing is
given by

m1 (x, f )"A
!z

m
i2n f D2B [lN

3
( f )!2l6

2
( f )#lN

1
( f )], (14)

and the Fourier transform of equation (4) for four-point "nite di!erencing is given
by

m1 (x, f )"A
!z

m
i4nf D2B [lN

4
( f )!l6

3
( f )!lN

2
( f )#l6

1
( f )], (15)
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where l6
i
is the Fourier transform of the velocity at position x

i
in the transducer

array. Substituting these equations into equation (11) yields

Gmm ( f )"A
z
m

2nfD2B
2

(G
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( f )#4G
22

( f )#G
33

( f )

#4ReMG
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( f )N#2ReMG
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( f )N#4ReMG
23

( f )N) (16)

for three-point "nite di!erencing, and

Gmm ( f )"A
z
m

4nfD2B
2

(G
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( f )#G
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( f )#G
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( f )#G
44

( f )
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( f )N#ReMG
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( f )N!ReMG
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( f )N)

#ReMG
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( f )N!ReMG
24

( f )N!ReMG
34

( f )N] (17)

for four-point "nite di!erencing. In the above equations, Gmm ( f ) is the predicted
dynamic strain autospectrum, G

ii
( f ) is the velocity autospectrum for position x

i
in

the transducer array, and ReMG
ij

( f )N is the real part of the complex
cross-spectrum between the velocity at position x

i
and the velocity at position x

j
.

These spectral methods require the simultaneous measurement of autospectra at all
measurement positions as well as cross-spectra between each combination of
measurement positions.

3.4. FREQUENCY RESPONSE FUNCTION FINITE DIFFERENCING

Frequency response function "nite di!erencing can be used to reduce the number
of simultaneous measurements required for "nite di!erencing from three or four to
only two. The predictions are performed using "nite di!erencing of the frequency
response functions measured at each position in the measurement array. The
frequency responses are measured sequentially using a roving transducer and
a reference, or simultaneously using transducers at each measurement position.
Dynamic strain frequency response function predictions obtained using frequency
response function "nite di!erencing can be used for time history, autospectral and
spatial predictions of dynamic strain.

Methods for the prediction of dynamic strain frequency response functions using
measured velocity frequency response functions are derived by substituting the
Fourier transform of the dynamic strain "nite di!erencing equation, equation (14)
or equation (15), into the de"nition of the dynamic strain frequency response
function given by

H
Rm (x, f )"

SR1 *( f ) mM (x, f )T
SR1 *( f ) R1 ( f )T

, (18)
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where R1 ( f ) is the complex Fourier transform of the arbitrary reference signal R(t)
and m1 (x, f ) is the complex Fourier transform of the predicted dynamic strain m(x, t ).
Substituting equation (14) for three-point "nite di!erencing into equation (18) gives

H
Rm (x, f )"A

z
m

i2n f D2B A
SR1 * ( f )lN

3
( f )T!2SR1 * ( f )lN

2
( f )T#SR1 * ( f )lN

1
( f )T

SR1 * ( f )R1 ( f )T B .

(19)

Since H
Rli ( f )"SR1 * ( f )lN

i
( f )T/SR1 * ( f ) R1 ( f )T , equation (19) simpli"es to

H
Rm (x, f )"A

z
m

i2n f D2B (H
Rl3 ( f )!2H

Rl2 ( f )#H
Rl1 ( f )), (20)

where H
Rli ( f ) is the frequency response function between the stationary reference

R and the velocity at position x
i

in the "nite di!erencing measurement array.
Similarly, for four-point "nite di!erencing, the predicted dynamic strain frequency
response function is given by

H
Rm (x, f )"A

z
m

i4n f D2B (H
Rl4 ( f )!H

Rl3 ( f )!H
Rl2 ( f )#H

Rl1 ( f )). (21)

These results show that "nite di!erencing predictions of dynamic strain can be
implemented directly in the frequency domain using "nite di!erencing of measured
complex frequency response functions. The above equations are based on the use of
velocity measurements, but displacement and acceleration can also be used as
outlined in Section 3.1. Since the di!erencing operations are evaluated numerically,
there is no noise introduced during di!erencing and it is not important whether
displacement, velocity or acceleration is used.

3.4.1. Autospectral predictions

Autospectral predictions of dynamic strain are calculated from the magnitude of
the predicted dynamic strain frequency response function and the measured
reference autospectrum G

RR
( f ) according to

G@mm (x, f )"DH
Rm (x, f ) D2G@

RR
( f ). (22)

3.4.2. Spatial predictions

Spatial distributions of dynamic strain are obtained by repeating autospectral
predictions of dynamic strain at various positions along the structure. These
autospectral predictions are calculated from the predicted dynamic strain
frequency response functions for each position x

1
and a single reference

autospectrum G@
RR

( f ):

G@mm (xi
, f )"DH

Rm (xi
, f ) D2G@

RR
( f ). (23)



DYNAMIC BENDING STRAIN 683
The prime is used to denote the response for the period of the reference
measurement G@

RR
( f ) which is independent of any particular frequency response

function measurement H
Rm (xi

, f ). Obviously, the same reference location must be
used throughout.

3.4.3. ¹ime history predictions

Dynamic strain time histories are predicted using the complex dynamic strain
frequency response function H

Rm (x , f ), a time history measurement of the reference
and a combination of Fourier transform methods and convolution:

m(x, t)"G P
=

~=

H
Rm (x, f ) AP

=

~=

R (t) e~*2nftdtB e*2nftd fH . (24)

3.5. COMPARISON OF METHODS

The relative bene"ts of the di!erent methods for practical predictions of dynamic
strain depend mainly on the equipment available for performing measurements and
the quality of this equipment.

Time-domain "nite di!erencing using an analogue di!erencing circuit provides
a single-channel real-time dynamic strain vibration signal but requires (i)
simultaneous measurements at three or four positions; (ii) phase-matched
transducers; (iii) phase-matched instrumentation; (iv) a low-noise di!erencing
circuit and (v) accurately calibrated transducers and instrumentation.

Frequency response function "nite di!erencing using transducers at each
measurement position can be used to obtain the same information as time-domain
"nite di!erentiating without the need for a di!erencing circuit. This requires a data
acquisition system with accurately calibrated simultaneous sampling across three
or four channels (if a remote reference is used, the number of transducers is
increased by one). These predictions have the same requirements as time-domain
"nite di!erencing except that the introduction of noise during the di!erencing
operation is eliminated. If the frequency response measurements are performed
sequentially with a roving transducer then the requirements for (i) simultanious
measurements at three or four positions, (ii) phase-matched transducers and
instrumentation and (iii) accurately calibrated measurement channels are
eliminated. Only a two-channel data acquisition system is required for sequential
frequency response measurements and the measurement channels do not need to be
phase-matched (provided that the phase errors remain constant).

Spectral di!erencing has the same requirements as frequency response function
"nite di!erencing using simultaneous measurements at each measurement position,
but is limited to autospectral predictions of dynamic strain.

4. ERROR SOURCES IN FINITE DIFFERENCING PREDICTIONS

Errors in "nite di!erencing predictions of dynamic strain result from (i)
"nite di!erencing bias errors, (ii) experimental errors, (iii) statistical errors in
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measurements and (iv) measurement noise. Finite di!erencing bias errors are
inherent in the use of "nite di!erencing methods. Statistical errors, experimental
errors and measurement noise are of increased signi"cance to the accuracy of "nite
di!erencing measurements of dynamic strain due to the sensitivity of the
di!erencing calculations to errors in the data used for di!erencing. These sources of
error must be minimized when performing vibration measurements.

4.1. FINITE DIFFERENCING BIAS ERRORS

Finite di!erencing bias errors are introduced as a result of using "nite
di!erencing approximations for the second order derivative in equation (2). The
"nite di!erencing bias error ratio e is de"ned by

m@"me, (25)

where

e"
d2w/dx2

d2w/dx2
, (26)

m@ is the exact dynamic strain, m is the predicted dynamic strain and d is the
di!erencing operator. Equation (25) can be used to account for "nite di!erencing
bias errors if the bias error ratio e is known.

4.1.1. Propagating wave bias error ratio

Finite di!erencing bias errors for propagating waves are derived by evaluating
equation (26) for w(x, k)"Ae*kx. For three-point "nite di!erencing the bias error
ratio e is given by

e
3pt

"

!k2D2

e*kD!2#e~*kD
"

k2D2

4 sin2(kD/2)
, (27)

whilst for four-point "nite di!erencing the bias error ratio is

e
4pt

"

!k2D2

e*3kD@2!e~*kD@2!e~*kD @2#e~*3kD@2
"

k2D2

cos(kD/2)!cos (3kD/2)
. (28)

The same equations result for two propagating waves moving in opposite
directions.

The "nite di!erencing bias error ratios associated with propagating waves for
both three- and four-point "nite di!erencing are plotted as a function of
wavenumber in Figure 3, using D/j as the abscissa. These errors result in dynamic
strain being underpredicted and are a function of wavelength and transducer
spacing. The errors are negligible at low frequency but increase with frequency, and
are larger for four-point di!erencing than for three-point di!erencing. At higher
frequencies not shown in Figure 3, as D/jP1 for three-point di!erencing and as
D/jP0.5 for four-point di!erencing, the bias error ratio increases to in"nity due to
spatial aliasing, limiting the frequency range of predictions. In order to minimize



Figure 3. Finite di!erencing bias error ratio for propagating waves (00 three point di!erencing;
}} four-point di!erencing).
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"nite di!erencing bias errors, and maximize the frequency range of predictions,
a small transducer spacing should be used.

4.1.2. Evanescent wave bias error ratio

The "nite di!erencing bias error ratio for an evanescent wave in the absence of
propagating waves is derived by evaluating equation (26) for w(x, k)"Aekx. For
three-point "nite di!erencing the bias error ratio is

e1
3pt

"

k2D2

ekD2
!2#e~kD

"

k2D2

2 (cosh (kD)!1)
, (29)

and for four-point "nite di!erencing the bias error ratio is

e1
4pt

"

k2D2

e3kD@2!ekD@2!ekD@2#e3kD@2
"

k2D2

(cosh(3kD/2)!cosh(kD/2)
. (30)

The bias error ratios from equations (29) and (30) for an evanescent wave were
plotted in Figure 4. These errors cause the components of dynamic strain
associated with evanescent waves to be overpredicted. Bias errors for evanescent
waves are larger for four-point "nite di!erencing than for three-point "nite
di!erencing and increase continuously with frequency. The bias error ratios for
propagating and evanescent waves are di!erent in terms of both direction and
magnitude.

4.1.3. Correction factors for ,nite di+erencing bias errors

The bias error ratios for propagating waves can be used as a correction factor for
"nite di!erencing predictions of dynamic strain to obtain exact predictions in
far"eld regions and conservative predictions in near"eld regions. This involves
scaling "nite di!erencing predictions by equation (27) or equation (28). Exact



Figure 4. Finite di!erencing bias error ratio for evanescent waves (rr three point di!erencing;
00 four-point di!erencing).
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predictions in the near "eld are not possible since the bias error ratios for
propagating and evanescent waves are di!erent, and the relative signi"cance of
propagating and evanescent waves cannot be pre-determined. The bias error ratio
for propagating waves gives conservative predictions in the near"eld since only
propagating wave bias errors decrease predicted dynamic strain.

4.2. EXPERIMENTAL ERRORS

Finite di!erencing calculations are sensitive to factors that produce amplitude
errors in the quantities to be di!erenced. Amplitude errors may result from
calibration errors (direct amplitude errors), positioning error (the response
amplitude at a di!erent position is used), phase di!erences (the response amplitude
at a di!erent instant is used) and external noise (direct amplitude errors). Assuming
that the magnitudes of the errors are frequency independent and a constant
transducer spacing is used, "nite di!erencing is most sensitive to experimental
errors at low frequency where wavelengths are largest. The reason for this is that
the errors as a percentage of the di!erences being calculated are much larger at low
frequency than at high frequency due to the relative closeness of the measurement
positions. In order to minimize the sensitivity of predictions to experimental errors,
the transducer spacing used should be maximized within the constraints imposed
by "nite di!erencing bias errors.

4.3. STATISTICAL ERRORS

Statistical errors will be present in measured autospectra, cross-spectra and
frequency response functions. These errors may be random or bias errors, and are
described in detail (with formulas for their estimation) by Bendat and Piersol [6].
Statistical random and bias errors produce amplitude errors with the same e!ects
as the experimental errors described in section 4.2.
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The most important points for "nite di!erencing predictions are that (i) the
resolution bandwidth must be su$ciently small to avoid frequency resolution bias
errors; (ii) the number of averages should be large to minimize random errors; (iii)
the signal amplitude of measurements should be maximized and (iv) extraneous
noise in measurements must be minimized. Finite di!erencing predictions of
dynamic strain are most sensitive to these errors at low frequency and transducer
spacing should be maximized (within the constraints imposed by "nite di!erencing
bias errors) to minimize the sensitivity of predictions to statistical errors.

5. LIMITATIONS WITH THE FINITE DIFFERENCING METEHOD

The main limitation of "nite di!erencing methods is that they cannot be used to
predict dynamic strain at system boundaries. This is due to (i) the spatial extent of
the transducer array and (ii) the prediction of dynamic strain at the centre of the
transducer array only. Since maximum dynamic strain occurs at the boundaries of
systems with one or more clamped boundaries, and the magnitude of dynamic
strain decreases rapidly with distance from a clamped boundary, "nite di!erencing
cannot be used to directly measure maximum dynamic strain in systems with one
or more clamped boundaries.

Other limitations with "nite di!erencing methods are that they are not exact in
near"eld regions and they only provide predictions at discrete locations. However,
the measurements are easily repeated at a number of locations to obtain a spatially
distributed set of predictions for dynamic strain.

6. EXPERIMENTS

Experimental results are presented in this section to demonstrate the use of "nite
di!erencing methods for the prediction of dynamic strain autospectra, spatial
distributions and time histories. Results demonstrating the application of "nite
di!erencing methods to the prediction of dynamic bending strain in a #at plate
structure are also presented.

6.1. EXPERIMENTAL PROCEDURES

Finite di!erencing predictions of dynamic strain were performed for the clamped
beam system in Figure 5 and the clamped plate system in Figure 6. Dynamic strain
was predicted at each location where strain gauges were installed (Table 1) and
compared with the strain gauge measurement of dynamic strain at that location.
The "nite di!erencing methods tested were (i) three-point frequency response
di!erencing, (ii) three-point analogue di!erencing (di!erencing performed in the
time domain) and (iii) four-point frequency response di!erencing.

6.1.1. Instrumentation

The phase-matching characteristics of the B&K 4375 accelerometers used for
measurements are summarized in Table 2. These accelerometers were used with



Figure 5. Clamped beam experimental arrangement.

Figure 6. Clamped plate experimental arrangement.
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B&K 2636 phase-matched charge ampli"ers to obtain velocity vibration signals
from the accelerometers and amplify the vibration signal in order to obtain an
optimal signal-to-noise ratio over a broad frequency range and minimize the e!ects
of noise present in the di!erencing circuits. Analogue di!erencing was performed
using a custom-built analogue di!erencing circuit with the logic shown in
Figure 2(a).

6.1.2. Data processing

Time history data was measured with a B&K 2133 Real-Time Frequency
Analyser. These data were processed either internally within the analyser using



TABLE 1

Strain gauge labels and strain gauge positions for the
clamped beam

Gauge Clamped

0 0)007 m
1 0)025 m
2 0)06 m
3 0)095 m
4 0)13 m
5 0)165 m
6 0)2 m
7 0)235 m
8 0)27 m
9 0)305 m

10 0)34 m
11 0)375 m
12 0)41 m

TABLE 2

Phase-matching characteristics of
the accelerometers

Frequency (Hz) Phase error (deg)

20}100 (1
100}200 (0)3
200}300 (0)2
Above 300 (0)1
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digital "ltering, or externally on a personal computer using FFT and convolution
routines. All measured data for frequency response function predictions was
processed with the FFT software.

Frequency response "nite di!erencing time history predictions of dynamic strain
obtained from equation (24) were calculated using the predicted dynamic strain
frequency response function, a reference time history (measured simultaneously
with the strain gauge dynamic strain time history measurement for that location)
and FFT-convolution routines. Exactly the same convolution routines, but with
the frequency response function set equal to (1#i0), were used to numerically
integrate time histories in the complex frequency domain for analogue di!erencing
predictions in the time domain (section 3.1) utilizing velocity or acceleration
vibration measurements:

x (t)"G P
=

~=

1
i2nf

(1#i0) AP
=

~=

xR (t) e~*2nft dtBe*2nft d f H . (31)



TABLE 3

Parameters for signal processing of measurements

Autospectral predictions Spatial predictions

Minimum frequency (HP "ltering) 20 Hz 20 Hz
Minimum frequency (LP "ltering) 1)41 Hz 355 Hz
Nyquist frequency 2048 Hz 512 Hz
Bandwidth 4 Hz 2 Hz
Averages 100 100
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Autospectral and spatial predictions of dynamic strain utilizing the FFT routines
were processed using the parameters listed in Table 3. A narrow bandwidth was
used to minimize bandwidth bias errors and to provide high-resolution results.
Time history predictions were measured using a sampling rate of 4096 samples per
second and were integrated numerically in the complex frequency domain as
described above. For autospectral predictions using analogue di!erencing and
digital "ltering, the measured and predicted dynamic strain autospectra were
measured simultaneously to 10 kHz in 1/12th octaves.

6.2. EFFECTS OF TRANSDUCER SPACING

Transducer spacing a!ects the sensitivity of predictions to experimental errors at
low frequencies, the magnitude of "nite di!erencing bias errors at mid to high
frequencies, and the upper frequency limit of predictions (due to spatial aliasing).
The ratios of predicted to measured mean-square dynamic strain for three di!erent
transducer spacings were calculated to observe the e!ect of transducer spacing on
the accuracy of predictions for the clamped beam experimental rig. These results
are plotted in Figure 7 for three-point analogue di!erencing predictions of dynamic
strain at x"0)095m. The transducer spacings tested were D"30, 40 and 50 mm.
As the transducer spacing is increased, low-frequency errors decrease but high-
frequency errors increase. Conversely, as the transducer spacing is decreased,
low-frequency errors increase but high-frequency errors decrease. These results
show that a large transducer spacing is required to minimize the e!ects of
experimental errors at low frequencies, whilst a small transducer spacing is required
to minimize the e!ects of "nite di!erencing bias errors at high frequencies, although
the latter can be corrected by scaling predictions using the "nite di!erencing bias
error ratio within the con"nes on upper frequency imposed by spatial aliasing.
A transducer spacing of 40 mm was used for all "nite di!erencing predictions of
dynamic strain except for the three-point spatial predictions of dynamic strain for
which a transducer spacing of 60 mm was used.

6.3. AUTOSPECTRAL PREDICTIONS

In this section, "nite di!erencing autospectral predictions of dynamic strain at
locations where strain gauges were installed are compared with the strain gauge



Figure 7. Ratio of "nite di!erencing prediction of dynamic strain to strain gauge measured
dynamic strain for three-point analogue di!erencing (0030 mm transducer spacing; rr 40 mm
transducer spacing: - - - 50 mm transducer spacing).
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measurement at that location. The predicted dynamic strain autospectra have been
scaled by the propagating wave "nite di!erencing bias error ratio to compensate for
"nite di!erencing bias errors [refer equations (27) and (28)]. Compensation factors
for evanescent wave "nite di!erencing bias errors were not necessary since these
errors result in conservative predictions.

6.3.1. Far,eld predictions

Measured and predicted dynamic strain autospectra for the positions x"0)235
and 0)34 m of the clamped beam system are plotted in Figure 8. Predicted dynamic
strain autospectra are presented for three-point frequency response di!erencing,
three-point analogue di!erencing and four-point frequency response di!erencing.

The predictions overpredict at the "rst resonant frequency. This is due to "nite
di!erencing methods being most sensitive to experimental errors at low frequency
and decreased phase matching between accelerometers below 100 Hz. At
frequencies above the "rst resonant frequency, the predicted dynamic strain for
each method agrees well with the measured dynamic strain. If correction factors for
"nite di!erencing bias errors had not been applied the predictions would have
increasingly underpredicted the measured dynamic strain at frequencies above
&500 Hz. The observed di!erences between measured and predicted dynamic
strain at anti-resonant frequencies are associated with either (i) the noise #oor of the
strain gauge measurement system or (ii) the "nite length of the strain gauge which
prevents measurement of dynamic strain at a discrete point.

Coherence functions and acceleration autospectra are plotted in Figure 9 for the
frequency response function measurements used to obtain the three-point
frequency response di!erencing prediction of dynamic strain at x"0)235 m in
Figure 8 (a). Each of the three frequency response measurements of acceleration
have frequencies of low coherence corresponding to antiresonances in the



Figure 8. Measured and predicted dynamic strain autospectra in the far"eld region of a clamped
beam excited at x"0)635m by white noise. (}} measured; - - - three-point frequency response
di!erencing; } } } three point analogue di!erencing; * - * four-point frequency response
di!erencing); (a) x"0)095 m; (b) x"0)235 m.
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acceleration autospectra for the location where the accelerometer measurement was
performed. These antiresonances occur at di!erent frequencies for each position in
the measurement array and do not appear to a!ect the accuracy of predictions. The
only frequency at which the predictions were a!ected by low coherence was at
620 Hz. At this frequency, all three frequency response measurements have low
coherence due to an antiresonance at the reference measurement position as shown in
Figure 9(b). It should also be noted that in spite of the small amplitude of dynamic
strain, the agreement between measured and predicted is very good over a dynamic
range of 50 dB indicating that the measurements have a low sensitivity to noise levels
in typical laboratory equipment.

6.3.2. Clamped boundary near,eld predictions

Measured and predicted dynamic strain autospectra are plotted in Figure 10 for
the position x"0)095 m of the clamped beam system. This position lies in the



Figure 9(a). Coherence functions for the three-point frequency response prediction of dynamic
strain at x"0)235m (** x"0)195 m; } } } x"0)235 m; - - - x"0)275m).

Figure 9(b). Acceleration autospectra for the three-point frequency response prediction of dynamic
strain at x"0)235m (** x"0)195 m; } } } x"0)235 m; - - - x"0)275m; * reference at
x"0)165 m).

DYNAMIC BENDING STRAIN 693
near"eld region associated with the clamped boundary at frequencies up to 400 Hz.
The agreement between measured and predicted dynamic strain is quite good
except in the region of the "rst resonant frequency where the measured dynamic
strain is overpredicted. As the agreement between measured and predicted is very
good at the second, third and fourth resonant frequencies where the measurement
position lies in the near "eld, these results show that "nite di!erencing can be used
for accurate predictions of dynamic strain in near"eld regions.

6.3.3. Clamped plate

Measured and predicted dynamic bending strain autospectra at x"0)125 m
from the boundary of a clamped plate experimental rig are plotted in Figure 11.



Figure 10. Measured and predicted dynamic strain autospectra at x"0)095m in the clamped
boundary near"eld region of a clamped beam excited at x"0)635 m by white noise (** measured;
- - - three point frequency response di!erencing; } } } three point analogue di!erencing * -
* four-point frequency response di!erencing).

Figure 11. Measured and predicted dynamic strain autospectra at x"0)125m of a clamped plate
excited by white noise (*m* measured; *K* predicted).
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The predicted dynamic strain was obtained using three-point analogue di!erencing
with a transducer spacing of 40 mm. The agreement between measured and
predicted is quite good except for some overprediction of dynamic strain below
100 Hz and above 6 kHz. Near"eld e!ects do not appear to have in#uenced the
predictions.

6.4. TIME-DOMAIN PREDICTIONS

Time history predictions of dynamic strain using "nite di!erencing methods were
performed for the clamped beam system. The predictions presented here were



Figure 12. Measured and predicted dynamic strain time histories at x"0)34m of a clamped plate
excited at x"0)635m at white noise (** measured; } } } predicted).
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obtained using three-point analogue di!erencing, but are also representative of
three and four-point frequency response "nite di!erencing time history predictions
of dynamic strain. The measured data used for these predictions had a lower
frequency limit of 20 Hz and an upper frequency limit of 1)41 kHz due to high and
low-pass "ltering, respectively.

6.4.1. Far,eld predictions

The measured and predicted dynamic strain time histories at x"0)34 m of the
clamped beam system for broadband excitation are plotted in Figure 12. The
agreement between measured and predicted is quite good except for di!erences
between measured and predicted introduced as a result of low-frequency errors
identi"ed in Figure 8(b).

To verify that the errors observed in Figure 12 were in fact due to low-frequency
errors in the prediction of dynamic strain, the measurements were repeated using
band-limited white noise as the excitation signal. The excitation signal had a centre
frequency of 800 Hz and a bandwidth of 400 Hz. The measured and predicted
dynamic strain time histories for narrow-band excitation are plotted in Figure 13.
There is very good agreement between measured and predicted in this case.

6.4.2. Near,eld predictions

The predicted dynamic strain time history at x"0)06 m in the clamped
boundary near"eld region of the clamped beam experimental rig is compared with
the measured dynamic strain for the same location in Figure 14. The beam was
excited using broad-band white noise and the predicted dynamic strain time history
was obtained using three-point analogue di!erencing. There is reasonable
agreement between the measured and predicted time histories. Errors in the
predicted time history are the result of signi"cant low-frequency experimental
errors.



Figure 13. Measured and predicted dynamic strain time histories at x"0)34m of a clamped beam
excited at x"0.635m by band-limited White noise with centre frequency 800 Hz and bandwidth
400 Hz (*m* measured; *K* predicted).

Figure 14. Measured and predicted dynamic strain time histories at x"0)06 m of a clamped beam
excited at x"0)635m by white noise (** measured; } } } } predicted).
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6.5. SPATIAL PREDICTIONS

The measured and predicted dynamic strain spatial distributions for the "rst
three resonant frequencies of the clamped beam experimental rig are plotted in
Figure 15. The "nite di!erencing predictions were obtained using three-point
frequency response di!erencing, three-point analogue di!erencing and four-point
frequency response di!erencing. Strain}velocity correlation predictions of dynamic
strain, obtained using the far"eld correlation ratio [1] are also included in Figure
15 for comparison and to identify the far"eld and near"eld response regions (the
far"eld strain}velocity correlation prediction of dynamic strain equals the
measured dynamic strain in far"eld regions).



Figure 15. Measured and predicted dynamic strain spatial distributions of a clamped beam excited
at x"0)635m by white noise (*m* measured;*m* three-point frequency response di!erencing;
*e* three point analogue di!erencing; *r* four-point frequency response di!erencing;
* - * strain}velocity correlation). (a) 42 Hz ("rst natural frequency), (b) 94 Hz (second natural
frequency), (c) 185 Hz (third natural frequency).
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The "nite di!erencing predictions of dynamic strain are inaccurate in the region
of the clamped boundary at the "rst resonant frequency. Further from the clamped
boundary, the predictions are reasonably accurate except for some larger errors in
the three-point frequency response di!erencing predictions at x"0)27 and
0)305 m. Inaccuracies in the "nite di!erencing predictions at the "rst resonant
frequency are the result of a high sensitivity to experimental errors (such as
positioning errors and phase errors resulting from cable motion) at large
wavelengths. The dynamic strain predictions at the second and third resonant
frequencies are much more accurate but still underpredict at the position closest to
the clamped boundary.

The accuracy of the predictions is seen to be independent of whether dynamic
strain is being predicted in the near"eld or the far"eld, with correlations between
dynamic strain and velocity being limited to the far"eld. The near"eld extends from
x"0)0 to 0)35 m in Figure 15(b) and x"0)25 m in Figure 15(c).

The results in Figure 15 show that spatial distributions of dynamic bending
strain can be obtained using "nite di!erencing methods. These predictions are
independent of whether dynamic strain is being predicted in the near "eld or far
"eld. However, due to the spatial extent of the transducer array, dynamic strain
could not be predicted close to the clamped boundary where dynamic strain was
largest. Far"eld correlations between dynamic strain and velocity provide equally
accurate predictions of dynamic strain at a point in the far"eld, but cannot be used
to predict dynamic strain in the near "eld.

7. CONCLUSIONS

Finite di!erencing formulations for the measurement of dynamic bending strain
as derived in this paper provide autospectral, and time history predictions bending
strain in both near"eld and far"eld regions. These predictions are performed using
either time or frequency-domain measurements of the vibrational response. The
methods require the simultaneous measurement of displacement or velocity at
three or four equally spaced positions. The number of simultaneous measurements
required is reduced to two if the response is stationary and frequency response "nite
di!erencing is used.

Experimental results demonstrating "nite di!erencing predictions of dynamic
bending strain are presented in this paper. Autospectral, spatial and time history
predictions of dynamic bending strain, obtained using the "nite di!erencing
method, agree well with strain gauge measurements except for errors at the "rst
resonant frequency. These predictions were scaled by the "nite di!erencing bias
error ratio for propagating waves to obtain more accurate predictions at higher
frequencies.

Finite di!erencing predictions of dynamic bending strain are sensitive to
amplitude errors in the vibration signals used for di!erencing. Sources of amplitude
errors include phase errors as these result in the use of amplitude values from the
wrong instant in time. Finite di!erencing is most sensitive to experimental errors at
low frequencies where wavelengths are largest and the di!erence in signal
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amplitude between each measurement position is smallest. To minimize the
sensitivity of "nite di!erencing to experimental errors, transducer spacing should
be maximized within the constraints imposed by "nite di!erencing bias errors and
spatial aliasing. Statistical errors (random and bias) produce amplitude errors with
the same e!ects on the accuracy of predictions as experimental errors. The
resolution bandwidth, number of averages and signal-to-noise ratio should be
optimized to minimize the e!ects of these errors. Only the signal-to-noise ratio
needs to be considered for time-domain "nite di!erencing. Velocity is the preferred
vibration signal for time-domain "nite di!erencing predictions of dynamic bending
strain since it has a #at frequency weighting which gives it the best signal-go-noise
ratio over a broad frequency range.

Finally, antiresonances at the reference position result in low coherence for the
frequency response function measurements at each position in the measurement
array, leading to inaccurate predictions at the frequencies of these antiresonances.
The reference transducer for frequency response function "nite di!erencing should
therefore be positioned to avoid antiresonances at frequencies signi"cant to the
response. Anti-resonances at the measurement positions result in low coherence but
do not appear to have a signi"cant e!ect on the accuracy of predictions. Attention
should still be paid however to avoiding antiresonances at the measurement
positions for vibration at frequencies signi"cant to the response.

The results presented here show that "nite di!erencing methods are of use in
place of strain gauges and strain}velocity correlations for direct measurements of
dynamic bending strain using accelerometers. The bene"ts of the "nite di!erencing
approach over other accelerometer-based techniques (such as the travelling wave
solution method [1, 7]) are that (i) post-processing for dynamic strain can be
performed within the frequency analyser used to collect the data, (ii) analogue
di!erencing provides real-time measurements of dynamic strain and (iii) the
method can be used to measure both components of dynamic strain in thin-plate
structures. The main limitation of the "nite di!erencing method is that it cannot be
used to predict dynamic bending strain at system boundaries, where dynamic
bending strain is usually largest, due to the spatial extent of the transducer array
(dynamic strain is only predicted at the centre of the transducer array). Travelling
wave solution methods have been developed by Koss and Karczub [7] for
autospectral and spatial predictions of dynamic strain, and by Karczub [1] for time
history predictions of dynamic strain, to overcome this limitation with "nite
di!erencing methods and provide accurate predictions of dynamic bending strain
at any location along a beam.
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